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Abstract— Multi-label few-shot learning (ML-FSL) refers to
the task of tagging previously unseen images with a set of
relevant labels, giving a small number of training examples.
Modeling the correlations between instances and labels, formu-
lated in the existing methods, allows us to extract more available
knowledge from limited examples. However, they simply explore
the instance and label correlations with a uniform importance
assumption without considering the discrepancy of importance
in different instances or labels, making the utilization of instance
and label correlations a bottleneck for ML-FSL. To tackle the
issue, we propose a unified framework named bilateral correla-
tion reconstruction (BCR) to enable the network to effectively
mine underlying instance and label correlations with varying
importance information from both instance-to-label and label-
to-instance perspectives. Specifically, from the instance-to-label
perspective, we refine prototypes per category by reweighting
each image with its specific instance-importance degree extracted
from the similarity between the instance and the corresponding
category. From the label-to-instance perspective, we smooth
labels for each image by recovering latent label-importance with
considering the integrated topology of all samples in a task.
Experimental results on multiple benchmarks validate that BCR
could outperform existing ML-FSL methods by large margins.

Index Terms— Few-shot learning, label correlation, multi-label
few-shot learning (ML-FSL), multi-label learning (MLL).

I. INTRODUCTION

RECENT advances in data-driven deep learning have
flourished in several tasks related to artificial intelligence,

including object detection [1], [2], action recognition [3], [4]
and robotics [5]. However, most deep learning approaches rely
heavily on large quantities of labeled data and struggle with
problems when labeled data are scarce [6]. In contrast, humans
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exhibit a remarkable ability to rapidly acquire knowledge
about new classes from limited instances. This significant gap
between human learning and machine learning provides fertile
ground for the development of deep learning [7].

For this reason, recent works of few-shot learning aim
to obtain the human-like meta learner that can learn novel
concepts with very few samples [8], [9]. However, most
existing few-shot learning approaches concentrate solely on
the scenario where each image is annotated with a single
label, ignoring a more realistic scenario where each image may
be interpreted by different concepts [10], [11], [12]. In such
cases, the meta learner should possess more intelligence to
simultaneously recognize multiple novel unseen classes with
limited examples. Unfortunately, these approaches struggle to
handle the challenge posed by multiple labels.

Recently, a few studies have begun to focus on the chal-
lenging topic of multi-label few-shot learning (ML-FSL).
To address this problem, they attempt to capture instance
and label correlations by modeling label dependencies to
extract more available knowledge from limited examples.
LaSO [13] redeploys the label dependency by generating
synthesized feature vectors with a series of label-set oper-
ations. KGGR [14] and CMW [15] exploit the statistical
label co-occurrences to capture the label dependencies of
different labels. Simon et al. [16] propose a label count
module containing context information to tackle the problem.
However, the previous methods leverage correlations between
instance and label to mitigate the risk of limited examples,
with the uniform assumption of instance-importance and label-
importance. In practice, the instance-importance corresponding
to each instance for a possible label and label-importance
corresponding to each relevant label for an instance are often
diverse, as illustrated in Fig. 1. As a result, these methods
may not perform as well as expected due to the unrealistic
assumption of uniform latent bilateral correlation.

As a matter of fact, instance-importance and
label-importance naturally exist in real-world applications,
representing how important an instance is in describing
a label and how a particular label is in describing an
instance. On one hand, for each image, the label-importance
corresponding to relevant labels is different. For instance,
in Fig. 1(a), the label of cow corresponds to strong label
importance while grass corresponds to weak importance.
On the other hand, the significance of the label-specific
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Fig. 1. Illustration of an image and its corresponding labels. For each image,
label-importance (a) cow≻ sky ≻grass and (b) grass≻ sky ≻cow. For each
label, instance-importance cow: (a) ≻ (b) and grass: (b) ≻ (a).

feature for a particular label can vary from image to image,
due to the diversity of the label-importance across instances.
As a result, the instance-importance for different instances
to describe a label is different. For instance, in Figures 1(a)
and 1(b), even though two images pose the same labels, the
instance-importance for particular labels is quite different.
If the diverse instance-importance and label-importance could
be fully extracted and leveraged, the performance of the
model would be further improved and strengthened.

In light of the above observations, we propose a uni-
fied framework called bilateral correlation reconstruction
(BCR) to effectively leverage the underlying label correla-
tions, along with the varying bilateral importance from both
instance-to-label and label-to-instance perspectives. Specifi-
cally, to construct instance-to-label correlation, we reweight
images according to the similarity-based instance-importance
of a certain label in images to refine the representative proto-
type. To construct label-to-instance correlations, we smooth
the ground-truth logical labels into numerical labels with
label-importance by aggregating the relationship of paired
examples in a joint feature and label embedding space.
To ensure that the model generates reasonably soft label
vectors, we impose a constraint on the soft label to prevent
it from deviating too far from the original ground-truth label
and lead it to consistently approaching the ground truth.

Our contributions can be summarized as follows.
1) We analyze the problem of the uniform label-importance

and instance-importance assumption and emphasize the
significance of utilization of the latent varying impor-
tance information for ML-FSL.

2) We propose a novel framework, BCR for ML-FSL. BCR
effectively leverages the underlying label correlations,
along with the varying importance from both instance-
to-label and label-to-instance perspectives.

3) We conduct extensive experiments to validate that our
BCR can effectively extract the underlying label correla-
tions without any auxiliary information and outperforms
the existing ML-FSL methods by large margins.

Other sections of this article are organized as follows. First,
Section II provides a brief review and discussion of related
research. Second, Section III presents the technical details
of BCR. After that, Section IV reports detailed experimental
results. Finally, Section V concludes the article and discusses
prospects for future research.

II. RELATED WORK

A. Few-Shot Learning

Few-shot classification aims to acquire profound visual rep-
resentation by learning to recognize unseen novel classes from
a few samples with abundant training on base classes [17],
[18]. Many efforts have been dedicated to handling the
challenge of data efficiency [19], [20], [21], [22], [23]. The
most related work to our method is the metric-based model,
which leverages similarity information in samples to identify
novel classes with few examples [24], [25], [26], [27], [28].
DeepEMD [29] divides images into different local regions
and adopts the Earth mover’s distance to measure the sim-
ilarity of two images. Prototypical networks [26] measures
the Euclidean distance between a query image and the class
centroids of support images. Since the method was proposed,
many approaches [30], [31], [32], and [33] have been devel-
oped to generate appropriate prototypes to better depict the
representation of each class. ProtoComNet [30] uses word
embedding with WordNet to assist in modifying prototypes.
ReProto [31] and RDC [32] leverage the Mixup strategy to
generate new prototypes combining original prototypes with
context information. CLIP-Adapter [34] imprints the language
information with CLIP into the classifier weighting. This
method adopts two additional linear layers to residual-style
connect with original visual or language features to improve
the flexibility of few-shot tasks. CLIP-FSAR [35] lever-
ages the textual concepts from CLIP to refine visual proto-
types. Different from the above studies, our method aims to
adaptively generate appropriate prototypes according to the
instance-importance of each instance to the particular labels
without any auxiliary prior knowledge.

B. Multi-Label Learning

Recently, there has been a growing interest in tacking
with label ambiguity, particularly in the context of multi-
label learning (MLL) [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46]. Traditional MLL approaches can be
broadly categorized into three types based on the order of label
correlations [47]: the first-order approaches decompose MLL
into a series of binary classification tasks, which may overlook
the potential information from one label that could benefit the
learning of others [48]; the second-order approaches consider
the correlations between pairs of labels, but they focus primar-
ily on distinguishing relevant from irrelevant labels [49]; and
the high-order approaches take into account the correlations
among label subsets or all the class labels [50]. However,
these approaches often assume equal label importance and
overlook latent discrepancies [51], [52], [53], [54]. Some
techniques have been proposed to mitigate these challenges.
For instance, distribution-balanced loss [55] aims to rebalance
weights and alleviate the undue suppression of negative labels.
ASL [56] introduces an asymmetric loss that uses distinct
γ values to weigh positive and negative samples in the
focal loss [57]. Another study [58] combines negative-tolerant
regularization [55] with class-balanced focal loss [59]. The
balanced softmax method [60] transforms the MLL loss into
a comparison of scores between relevant and irrelevant labels.
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Nevertheless, these methods intricately design correlation rules
extracted from a vast number of samples and often lack
tailored strategies for few-shot learning scenarios. In our
approach, we use prototypes to represent label-specific features
and adjust these prototypes based on varying importance
information in labels. This allows us to effectively harness
underlying label correlations, enhancing the performance of
the few-shot model.

C. Multi-Label Few-Shot Learning

Recently, a few works have begun to focus on the profound
but difficult ML-FSL. LaSO [13] uses a data augmentation
strategy that generates synthetic feature vectors through label-
set operations. KGGR [14] adopts a GCN where labels are
modeled as nodes and statistical label co-occurrences are
modeled as edges to exploit the label dependencies. To address
the statistical bias of limited examples, CMW [15] enhances
the label co-occurrence using word embeddings as auxiliary
prior knowledge about label meanings and aggregates the local
feature maps of the support images to generate prototypes. [16]
designs three baselines by modifying the single-label few-shot
learning methods, i.e., ProtoNets [26], RelationNets [61] and
label propagation networks with label count module for the
multi-label regime. However, the above methods have uniform
assumptions about the instance-importance of images to a
particular label and the label-importance of relevant labels
to each instance. They indiscriminately use each label and
instance. In the context of few-shot scenarios with limited
examples, relying on such an assumption becomes unreason-
able. This constraint hinders effective utilization of underlying
label correlations, consequently impeding further enhance-
ments in model performance. In this article, we resort to
diverse instance-importance and label-importance and propose
a unified framework for ML-FSL.

III. BILATERAL CORRELATION RECONSTRUCTION

A. Problem Setting

In this article, we consider the following ML-FSL setting.
We adopt the episode training process and each episode
samples a task. The whole process contains two stages: the
meta-training stage and the meta-testing stage. In the meta-
training stage, base class dataset Dbase with a set of base labels
Cbase is adopted. In the meta-testing stage, novel class dataset
Dnovel with a set of novel labels Cnovel, where Cnovel

⋂
Cbase=∅,

is used. The meta-training stage can be regarded as a rehearsal
to mimic the learning process of the meta-testing stage to
assist in model training and generalize the knowledge to meta-
testing. Specifically, in the meta-training stage, a series of
tasks are sampled from Dbase, and each task T = {S,Q} =

{(xt , yt )}
T
t=1 is composed of a support set S and a query set Q.

The query set Q is composed of samples that are unseen in S.
The goal of each task is to estimate the label vectors of query
samples in Q with limited support samples in S. For an N -way
K -shot task, N labels are randomly selected from Cbase and
K samples are randomly selected for each label to compose
support set S. It should be noted that in multi-label regimes,
since each sample can be annotated with multiple labels, each

label may correspond to more than K samples. In the meta-
testing stage, a series of ML-FSL tasks are sampled for testing
where the labels are from Cnovel. In this stage, query samples
are used for the final prediction with limited support samples
in Dnovel.

B. Overview

As illustrated in Fig. 2, our framework consists of two
main components, i.e., instance-to-label correlation recon-
struction (I2L-CR) and label-to-instance correlation recon-
struction (L2I-CR). I2L-CR in Fig. 2(a) aims to exploit the
instance-importance of a certain label in all the samples to gen-
erate refined prototypes. I2L-CR first adopts similarity scores
between samples and the prototype corresponding to a label to
profile the instance-importance of the particular label in sam-
ples. Then, the prototypes are reconstructed with similarity-
based instance-importance scores to achieve the classification
loss. L2I-CR in Fig. 2(b) aims to recover and leverage the
label-importance of relevant labels for each instance. It first
concatenates both feature embedding and label embedding for
feature information aggregation. Then, the similarity matrix
containing the similarity scores between aggregated features
is established in the joint space to smooth the labels. In the
meantime, the label-importance scores are estimated with
refined prototypes and are leveraged to align smoothed labels.
Therefore, the label-importance loss is established. Moreover,
a constraint loss is established to constrain smoothed labels
from deviating too far from the ground-truth labels.

It should be noted that the importance of instance-to-label
and label-to-instance perspectives is different. In the former
perspective, the instance-importance denotes the importance
degree of any sample to a certain label, which is used
for reconstructing prototypes. In the latter perspective, the
label-importance denotes the importance degree of all the rel-
ative labels to each sample, which is leveraged for smoothing
label vectors.

C. Instance-to-Label Correlation Reconstruction

For I2L-CR, we explore the correlation of different sam-
ples annotated with the same label and adopt prototypes as
feature representatives for few-shot scenarios. The original
idea of prototypes is the average embeddings of all the
samples with the same label. Considering the discrepancy of
instance-importance inherent in different images, we refine
the prototype of the label by reweighting samples with the
corresponding instance-importance to the label.

Given a specific task T = {S,Q} in an episode, we first
use the feature extractor fθ (·) to transform the original images
from the input space to the embedding space and obtain the
original prototype

p(c)
=

1∣∣S(c)
∣∣ ∑

xi ∈S(c)

fθ (xi ) (1)

where S(c) is a subset of S with the label c and xi is from
S(c).

Original prototypes are with the assumption that differ-
ent samples hold uniform instance-importance for a label.
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Fig. 2. Overview of BCR. The prototypes in both the subfigures are refined prototypes according to the instance-importance of samples. (a) I2L-CR.
(b) L2I-CR.

According to previous analyses, the assumption is irrational
and the learned feature representations might be biased.

To eliminate the problem, for each label, we further refine its
prototype according to the instance-importance of the support
samples for specific labels, as shown in Fig. 2(a). In this
article, for a specific label, we adopt the similarity between
a sample and the prototype for the label to indicate the
instance-importance of the sample to the label. Therefore,
we calculate the normalized similarity score between the
sample and average prototype p(c)

s(c)
i =

[
cos

(
fθ (xi ), p(c)

)]
+∑

x j ∈S(c)

[
cos

(
fθ

(
x j

)
, p(c)

)]
+

(2)

where cos(·, ·) denotes cosine similarity. We adopt cosine
similarity since it is not only insensitive to the absolute
values of different numerical values but also can normalize
these values to a unified order of magnitude to calculate the
similarity between two vectors. Moreover, since the range of
cosine similarity is [−1, 1], we leverage the “[∗]+” function
(if ∗ is less than 0, then [∗]+ is 0, else it is ∗) to guarantee
nonzero denominators. That is, if the cosine similarity between
the specific sample and the average prototype is negative,
we assume that it does not contribute to the class prototype.

After that, the normalized similarity score s(c)
i can be used

to reweight the samples and the prototype is refined as

p̂(c)
=

∑
xi ∈S(c)

s(c)
i · fθ (xi ). (3)

For a query sample xq in Q, the classification score corre-
sponding to label c is calculated as negative Euclidean distance
between its feature and the refined prototype of label c

r (c)
q = −

∥∥ p̂(c)
− fθ

(
xq

)∥∥2
2

/
τ (4)

where τ is the temperature scalar to scale τ to the appropriate
scope. Since ML-FSL focuses more on the classification of

a specific label rather than the overall distribution of all the
labels, the Euclidean distance with a wider range is better than
cosine similarity as the measure used in classification.

Finally, the output of the classification module r̂ (c) which
is scaled into (0, 1) can be obtained by

r̂ (c)
q = 2 · sigmoid

(
r (c)

q

)
, (5)

where sigmoid(·) is the sigmoid function.
1) Classification Loss: In the meta-training stage, the binary

cross-entropy loss function is adopted to update the parameters
of the classification module

LCLS =

|Q|∑
q=1

N∑
c=1

[
y(c)

q log
(
r̂ (c)

q

)
+

(
1 − y(c)

q

)
log

(
1 − r̂ (c)

q

)]
(6)

where y(c) is the ground-truth label indicator for label c.

D. Label-to-Instance Correlation Reconstruction

For L2I-CR, we explore the correlation of different labels
in a sample. The core idea is to aggregate the topology of all
the samples to recover and leverage the latent distribution of
label-importance in images.

1) Label Smoothing: The goal of our label smoothing is to
use the existing images and their corresponding label vectors
as much as possible to recover the label-to-instance correlation
in the given image. As shown in Fig. 2(b), given a specific
task T = {S,Q} in an episode, we merge support set S with
query set Q, and then divide the whole task dataset into the
image part X ∈ R(N K+Q)×C×H×W and the label matrix Y ∈

R(N K+Q)×N , where Q denotes the number of query samples,
and C , H , and W denote the channel, height, and width of the
feature maps of the images, respectively. We extract features
with fθ (·) from X to generate feature matrix X ∈ R(N K+Q)×D ,
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where D denotes the dimension of the output space of feature
extractor fθ (·). Then, feature encoder gφ(·) and label encoder
hϵ(·) are used to encode X and Y , respectively. After that, the
embeddings are concatenated in the joint embedding space to
construct the aggregation matrix Z from both feature and label
perspectives

Z = Concat
[
gφ(X), hϵ(Y )

]
(7)

where Concat performs concatenation operation. Then, the
similarity information of samples in Z is used to enhance
the label matrix Y and recover the latent label-importance in
labels. Concretely, the similarity matrix M is first constructed
with each element in Z

Mi, j = cos
(
Z i , Z j

)
(8)

where Z i and Z j are the i th and j th element vectors, respec-
tively.

After that, to profile the label-importance of relevant labels
in a sample, we reconstruct the label matrix with smoothed
numerical values by aggregating the similarity information of
paired examples in the joint embedding space

Ŷ = MY (9)

where Ŷ is the enhanced label matrix. Subsequently, the
smoothed label vector di with varying label-importance cor-
responding to a sample xi can be obtained by the softmax
operation on each element of Ŷ

di = softmax
(
Ŷ i

)
(10)

where Ŷ i is the label vector corresponding to xi .
2) Label-Importance Estimation: The goal of label-

importance estimation is to estimate label-important scores and
guide the training of the classification model, which illustrates
the label-to-instance correlation of an image. To effectively
leverage the obtained label-importance information, samples
in the task are further used to construct a label-importance
estimation. Similar to I2L-CR, for a specific label c, we first
attain the original prototype p∗(c)

p∗(c)
=

1∣∣X (c)
∣∣ ∑

xi ∈X (c)

fθ (xi ) (11)

where X (c) is the subset of X with the label c. Note that p∗(c)

is different from p(c) in (1), where the former only uses the
support samples to generate prototypes while the latter uses
all the samples in a task.

Then, the similarity-based instance-importance is leveraged
to refine prototypes and eliminate this representation bias.
We calculate the normalized similarity score between the
sample xi and prototype p∗(c)

s∗(c)
i =

[
cos

(
fθ (xi ), p∗(c)

)]
+∑

x j ∈X (c)

[
cos

(
fθ

(
x j

)
, p∗(c)

)]
+

. (12)

The prototype of label c is refined as

p̂∗(c)
=

∑
xi ∈X (c)

s∗(c)
i · fθ (xi ). (13)

For each sample xi ∈ X , the label-importance score corre-
sponding to label c is calculated as follows:

r∗(c)
i =

e−

∥∥∥ p̂∗(c)
− fθ (xi )

∥∥∥2

2
/τ

∑N
n=1 e−

∥∥∥ p̂∗(n)
− fθ (xi )

∥∥∥2

2
/τ

. (14)

a) Label-importance loss: We leverage the
label-importance loss to guide the label-importance score to
approximate the recovered label smoothing vector, so that it
can more accurately reflect the relative relationship between
different labels to the given image, thereby achieving a
more accurate prediction. We adopt the Kullback–Leibler
divergence between the smoothed label vector d and the
label-importance score vector r∗ as the loss function

LLI =

|X |∑
i=1

N∑
c=1

d(c)
i log

d(c)
i

r∗(c)
i

(15)

where i denotes the sample index in X .
b) Constraint loss: In addition, to make feature encoder

gφ(·) and label encoder hϵ(·) recover reasonably label-
importance information, we constrain the smoothed numerical
label matrix Ŷ so that it does not deviate too far from the
ground-truth label. Concretely, we adopt the constraint with
the following loss function:

LCL =

|X |∑
i=1

N∑
c=1

[
y(c)

i log
(

Ỹ (c)
i

)
+

(
1 − y(c)

i

)
log

(
1 − Ỹ (c)

i

)]
(16)

where Ỹ (c)
i = sigmoid(Ŷ (c)

i ) and y(c) is the ground-truth
label indicator for label c.

E. Model Training and Prediction

In the meta-training stage, we leverage the following loss
function to optimize the model in each episode:

L = LCLS + λLLI + ηLCL (17)

where λ and η are hyper-parameters to balance the classifica-
tion loss, label-importance loss, and constraint loss.

In the meta-testing stage, the output of the classification
score is the final prediction in (5). The pseudocode for the
training and testing processes of the BCR framework is given
in Algorithm 1.

IV. EXPERIMENTS

In this section, the effectiveness of BCR is verified through a
series of experiments. All the methods are implemented using
the PyTorch framework. The computations are performed
on a GPU server with NVIDIA Tesla V100 GPU, Intel
Xeon Gold 6240 CPU 2.60-GHz processor, and 32-GB GPU
memory.
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Algorithm 1 BCR Framework

1: Require: Base class dataset Dbase = {Ti }
I
i=1 and meta-testing tasks T ∗

= {S∗,Q∗}

2: Require: Feature extractor fθ (·), feature encoder gφ(·) and label encoder hϵ(·)

3: procedure TRAIN(Dbase, fθ , gφ , hϵ)
4: while not done do
5: Sample task T = {S,Q}

6: Calculate the classification loss LC L S according to (6)
7: Calculate the label-importance loss LL I according to (15)
8: Calculate the constraint loss LC L according to (16)
9: Update fθ , gφ , hϵ based on (17) with LC L S , LL I and LC L

10: end while
11: end procedure

12: procedure TEST(T ∗, fθ , gφ , hϵ)
13: Obtain the refined prototype p̂(c) according to (3)
14: Obtain the final prediction of the classification module r̂ (c) according to (5)
15: end procedure

A. Datasets and Preprocessing

To evaluate the performance of BCR, we conduct
experiments on several real-world datasets, including MS-
COCO [62], CUB-200-2011 [63], NUS-WIDE [64], and visual
genome (VG) [65]. For each dataset, we split three disjoint sets
of labels for training, validating, and testing, respectively, and
the images with annotated labels in one of these sets do not
appear in the others. Following [16], we remove images that
have less than two labels.

1) MS-COCO (COCO) is a benchmark dataset for object
detection and recognition tasks, comprising 80 K train-
ing images annotated with 80 different labels. Follow-
ing [13], we split the training set, validation set, and test
set into 48, 16, and 16 labels, respectively.

2) CUB-200-2011 (CUB) is a prominent image benchmark
dataset for fine-grained classification tasks. It encom-
passes a total of 11 788 images annotated with
200 labels. For the CUB dataset, we narrow our focus
to the top 100 most prevalent categories, forming a
relevant subset. Subsequently, we partition these labels
into distinct sets: a training set containing 60 labels,
a validation set containing 20 labels, and a test set
containing 20 labels.

3) NUS-WIDE (NUS) is a public multi-label image classi-
fication dataset comprising 260 K images labeled with
81 visual concepts. To facilitate our experimentation,
we distribute these labels across distinct sets: a training
set incorporating 41 labels, a validation set encompass-
ing 20 labels, and a test set encompassing 20 labels.

4) The VG dataset consists of an extensive collection of
108 077 images, each meticulously annotated with object
labels spanning a multitude of categories. In our explo-
ration of the VG dataset, we narrow our focus to the
top 100 most frequently occurring categories, thereby
establishing a subset for our analysis. Consequently,
we partition these selected labels into distinct sub-
sets: a training set incorporating 60 labels, a validation

set encompassing 20 labels, and a test set containing
20 labels.

B. Methods and Hyperparameters

To validate the efficacy of BCR, several competitive
and state-of-the-art ML-FSL methods, including LaSO [13],
KGGR [14], CMW [15], ProtoNet [16], RelationNet [16],
LPN [16], and LPN+NLC [16], are used as baselines. Accord-
ing to the original manuscripts of compared methods, the
former two methods adopt the traditional training process
while the latter five methods are with the episode training
process. Detailed descriptions of these methods are given as
follows.

1) LaSO [13] introduces a data augmentation technique that
involves generating synthesized feature vectors through
label-set operations. This innovative approach enables
the generation of novel multi-label samples by combin-
ing elements from other samples, thereby expanding the
scope of data augmentation.

2) KGGR [14] presents a novel approach that integrates
statistical label correlations with deep neural networks.
By incorporating prior knowledge, it guides adaptive
information propagation across various categories within
a graph. This strategy enhances multi-label analysis and
reduces reliance on training samples.

3) CMW [15] leverages word embeddings as a source of
prior knowledge concerning label meanings. By aggre-
gating local feature maps from the support images,
it derives visual prototypes that incorporate this prior
information.

4) ProtoNet [16] extends the concept of prototypical net-
works to operate within a multi-label context. It accom-
plishes this using a softmax function to perform multi-
label classification.

5) RelationNet [16] introduces modifications to the relation
module, transforming it into a nonlinear metric. In addi-
tion, it uses a log-loss function to seamlessly transition
RelationNet from single-label to multi-label scenarios.
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TABLE I
COMPARISON IN MAP(%) WITH EXISTING SOTA METHODS IN 16-WAY

ONE-SHOT AND FIVE-SHOT SCENARIOS ON THE COCO DATASET. THE
RESULTS OF COMPARED METHODS WITH PRESENTED BACKBONES

HAVE BEEN REPORTED IN THE ORIGINAL PAPER

6) LPN [16] formulates few-shot learning within a
graph-based framework. It harnesses label propagation
techniques for query sample classification. By capital-
izing on the smoothness property, LPN predicts con-
cept scores, attributing similar concept scores to akin
instances.

7) LPN + NLC [16] synergizes the LPN approach with
neural label count module (NLC). This integration
enhances the ability of the method to estimate the
number of labels associated with a given input, thereby
contributing to overall performance improvement.

For fair comparisons, in each experiment, the maximum
number of training episodes is set to 50 000. All the algo-
rithms leverage the Adam optimizer [66] for parameter opti-
mization, uniformly using a learning rate of 10−3. In BCR,
the hyperparameters λ and η are chosen from the set
{0.01, 0.05, 0.1, 0.5, 1.0} on the validation set using grid
search. The performances of different methods are evaluated
using the extensively adopted mean average precision (mAP)
[13], [14], [15], [16].

C. Experimental Results

1) Comparison on COCO Dataset: We first evaluate the
performances of different algorithms on the COCO dataset
under the setting of 16-way one-shot and five-shot, using the
class split proposed in [13]. For BCR, we test its performance
when using Conv-4-64, GoogleNet-v3, and ResNet-101 as
backbones. Since GoogleNet-v3 and ResNet-101 require more
training resources compared with Conv-4, the model is first
pretrained on the training dataset with binary cross-entropy
loss function for 50 epochs. The performance comparisons
are presented in Table I. For each compared method, we use
the reported result from the original paper. We highlight the
best result among all the methods in bold. From Table I,
it can be observed that our proposed BCR exhibits significant
performance advantages. Using a simple and shallow Conv-4-
64 backbone, BCR can outperform the existing methods with
deeper architecture by a considerable margin on the one-shot
setting. Moreover, our proposed BCR method is better than
the existing methods on the GoogleNet-v3 and ResNet-101
backbones. Especially, BCR with ResNet-101 outperforms all

the existing leading methods by around 7% in one-shot setting
and 4% in five-shot setting. These results effectively illustrate
the efficacy and flexibility of our proposed BCR.

2) Comparison on Different Datasets: To further substan-
tiate the superior performance of BCR and ensure a fair
comparison, we conduct experiments across all the methods
under the same settings. We adopt Conv-4-64 [25] as the back-
bone and set the feature embedding dimensions as 1600 for
all the methods. The evaluation metric used is the average
mAP calculated over 1000 test episodes, accompanied by 95%
confidence intervals. These evaluations are conducted on the
COCO, CUB, NUS, and VG datasets, encompassing both the
ten-way five-shot and one-shot scenarios. Table II presents
the experimental results. For each comparison, the best result
is highlighted in bold. Moreover, we perform two-tailed t-tests
at a significance level of 0.05 to determine whether BCR
exhibits statistically superior or inferior performance compared
with comparing algorithms.

From Table II, we can observe that BCR achieves the
highest accuracies and outperforms the previous methods with
significant margins in all the cases on all the four datasets.
Especially, since the classes in these two datasets are more
explicit and have more significant differences, BCR outper-
forms current leading methods by around 6% on the COCO
and NUS datasets in all the cases. In CUB, the fine-grained
dataset with significant class overlap and VG the visual
question–answering dataset with poor-quality annotations and
ambiguous object names [67], BCR still improved the per-
formances consistently. Moreover, BCR establishes statistical
superiority over the compared algorithms in almost all the
cases. The experimental results demonstrate that BCR has
superior performance in ML-FSL tasks.

D. Quantitative Analysis of Instance-Importance and
Label-Importance

We conduct quantitative analysis to illustrate the effec-
tiveness of I2L-CR and L2I-CR. Concretely, we analyze the
instance-importance scores for different images to a particular
label and label-importance score distribution for different
labels to an instance in exemplar ML-FSL tasks.

Fig. 3 gives a quantitative analysis of I2L-CR in an exemplar
ML-FSL task. From Fig. 3, it can be observed that BCR can
generate reasonable instance-importance score for different
images to a particular label. For each label, images that
can describe the label more effectively have higher instance-
importance scores, while images with less instance-to-label
correlation have lower scores.

Fig. 4 illustrates a quantitative analysis of L2I-CR in an
exemplar ML-FSL task. From Fig. 3, it can be observed that
BCR can generate suitable label-importance distribution for
different labels to an instance. For each image, the label that
can describe the image more accurately has higher label-
importance scores, while the label with less label-to-instance
correlation has lower scores.

E. Ablation Study

1) Efficiency of Different Components: To ensure a compre-
hensive grasp of our model, we devise four distinct scenarios
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TABLE II
COMPARISON IN MAP(%) WITH DIFFERENT DATASETS ON TEN-WAY ONE-SHOT AND FIVE-SHOT SCENARIOS. ALL RESULTS ARE AVERAGED

OVER 1000 TEST EPISODES WITH 95% CONFIDENCE. ALL METHODS ADOPT CONV-4-64 [25] AS THE BACKBONE AND THE FEATURE
EMBEDDING DIMENSIONS ARE SET TO 1600. • / ◦ INDICATES WHETHER BCR IS STATISTICALLY SUPERIOR/INFERIOR

TO THE COMPARING ALGORITHMS

Fig. 3. Quantitative analysis of instance-importance in an exemplar ML-FSL task.

to assess the individual impact of each component within the
proposed BCR framework.

1) Case 1 (Pretrained Directly): Directly using the encoder
pretrained on all the base classes using binary cross-
entropy loss [69], [70] for the final prediction with (5)
without meta-training.

2) Case 2 (Average Prototypes): Constructing prototypes
without reweighting each sample according to instance-
importance.

3) Case 3 (EUC + COS): Use Euclidean distance to replace
cosine similarity in (2) and (12) and use cosine similarity
to replace Euclidean distance in (4) and (14).

4) Case 4 (COS + COS): Use cosine similarity to replace
Euclidean distance in (4) and (14).

5) Case 5 (EUC + EUC): Use Euclidean distance to
replace cosine similarity in (2) and (12).

6) Case 6 (LCLS): Training the model without LLI and LCL
in (17).

7) Case 7 (LCLS + LCL): Training the model without LLI
in (17).

8) Case 8 (LCLS + LLI): Training the model without LCL
in (17).

The experimental results of the various cases on the
four datasets are consolidated in Table III. From Table III,
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Fig. 4. Quantitative analysis of label-importance in an exemplar ML-FSL task.

Fig. 5. Performance comparison between varying values of λ and η on different datasets. (a) COCO. (b) CUB. (c) NUS. (d) VG.

TABLE III
COMPARISON IN MAP(%) WITH DIFFERENT CASES OF BCR ON TEN-WAY ONE-SHOT AND FIVE-SHOT SCENARIOS. ALL RESULTS ARE AVERAGED

OVER 1000 TEST EPISODES WITH 95% CONFIDENCE. • / ◦ INDICATES WHETHER BCR IS STATISTICALLY SUPERIOR/INFERIOR
TO THE COMPARING CASES

we can observe that each part of our proposed BCR is essen-
tial. Specifically, meta-training process of BCR is necessary
(case 1). The refined prototype can promote the classification
ability of the model (case 2). The usages of cosine similarity
in (2) and (12) and Euclidean distance in (4) and (14) are
essential (Cases 3–5). These observations illustrate that lever-
aging cosine similarity to calibrate prototypes and Euclidean
distance for classification is beneficial for the whole learning
system. Both LLI and LCL contribute positively to performance
enhancement (Cases 6–8). In the meantime, these observations

further prove the rationality of latent instance-importance and
label-importance extraction and the validity of each component
in our proposed BCR.

2) Sensitivity Analysis of λ and η: In this part, we delve into
the effectiveness of the hyperparameters λ and η. We undertake
a comparative analysis of BCR across various values of λ and
η under the ten-way one-shot setting. The experimental results
achieved by BCR with varying values of λ and η are illustrated
in Fig. 5.

From Fig. 5, we can find the below.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Southeast University. Downloaded on July 03,2024 at 04:59:12 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. Comparison of the feature maps generated by different methods. (a) Class activate mapping corresponding to categories on image A for different
methods. (b) Class activate mapping corresponding to categories on image B for different methods.

1) Overall, BCR has a stable performance with a wide
range of hyperparameter values on all the four datasets.

2) Model performance variations remain within a minimal
threshold of 1% across different parameter values.

3) Suitable value of η contributes to enhanced model per-
formance. In particular, on the COCO dataset, the model
achieves the best performance when both η and λ are
set to 0.5. On the CUB dataset, optimal performance is
reached with η set to 0.05 and λ set to 0.5. This happens
on the NUS dataset when the values of η and λ are equal
to 0.05. Finally, on the VG dataset, BCR demonstrates
superior performance with η at 0.5 and λ at 1. These
findings further verify the robustness of the proposed
BCR in practical application.

F. Visualization Analysis
To further demonstrate that our BCR can effectively mit-

igate the deviation of the learning for different categories,
we use class activation mapping (CAM) [68] to exhibit the
visualization results of the compared methods and BCR in
Fig. 6. Concretely, we illustrate the responses of feature maps
generated by different methods to different categories. The
first column of Fig. 6 showcases original images and their
corresponding labels, drawn from the COCO dataset. The
second column illustrates CAMs generated by BCR and the
subsequent columns display CAMs generated by the compar-
ing methods.

From Figs. 6, we can find that the category representations
extracted by the compared methods without distinguishing
instance-importance and label-importance have serious devi-
ations. For example, the category representations of car and
horse are seriously affected by each other in Fig. 6(a), and
the category representation of laptop is also confused by
cat in Fig. 6(b). On the contrary, from the CAMs generated
by BCR, we can find that BCR considering the various
instance-importance and label-importance can effectively mit-
igate the representations bias, which can accurately respond
to different categories and generate reasonable category rep-
resentations. These observations further demonstrate that our
BCR can effectively use underlying label correlations when
handling ML-FSL tasks.

G. Convergence Analysis

We further conduct experiments to test the convergence of
the optimal validation mAP for the BCR method with changes
in the number of training episodes. The experimental results
are illustrated in Fig. 7. From Fig. 7, we can find that BCR
can achieve high precision in early training, while the overall
training process can further improve the performance of the
model. Therefore, BCR can achieve effective representation
and reweighting in the early stages of training through I2L-
CR, thereby ensuring the effectiveness of the training of the
feature extractor.
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Fig. 7. Convergence of the optimal validation mAP for the BCR method with changes in the number of training episodes. (a) COCO (ten-way one-shot).
(b) COCO (ten-way five-shot). (c) CUB (ten-way one-shot). (d) CUB (ten-way five-shot). (e) NUS (ten-way one-shot). (f) NUS (ten-way five-shot). (g) VG
(ten-way one-shot). (h) VG (ten-way five-shot).

V. CONCLUSION

In this article, we delve into ML-FSL, which is a profound
and practical topic. We analyze and reveal the problem in
the existing ML-FSL methods that they model the label
correlations with an irrational assumption of the uniform
instance-importance and label-importance, which might affect
the improvement of model performance. To address this issue,
we develop a novel framework named BCR to effectively
mine and leverage the underlying label correlations, along
with varying instance-importance and label-importance from
both instance-to-label and label-to-instance perspectives. Our
extensive experimental analysis unequivocally demonstrates
that BCR, even in the absence of auxiliary information, outper-
forms the existing ML-FSL methods by a significant margin,
which unveils the efficiency of using instance-importance and
label-importance. We hope our efforts could be helpful for
both few-shot learning and MLL communities.
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